首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15088篇
  免费   2116篇
  国内免费   1161篇
电工技术   236篇
综合类   1016篇
化学工业   7165篇
金属工艺   1085篇
机械仪表   542篇
建筑科学   443篇
矿业工程   233篇
能源动力   798篇
轻工业   263篇
水利工程   168篇
石油天然气   452篇
武器工业   123篇
无线电   1494篇
一般工业技术   3658篇
冶金工业   438篇
原子能技术   77篇
自动化技术   174篇
  2024年   33篇
  2023年   717篇
  2022年   750篇
  2021年   817篇
  2020年   756篇
  2019年   746篇
  2018年   689篇
  2017年   735篇
  2016年   579篇
  2015年   510篇
  2014年   666篇
  2013年   775篇
  2012年   821篇
  2011年   961篇
  2010年   601篇
  2009年   812篇
  2008年   648篇
  2007年   891篇
  2006年   821篇
  2005年   711篇
  2004年   654篇
  2003年   563篇
  2002年   472篇
  2001年   434篇
  2000年   441篇
  1999年   285篇
  1998年   256篇
  1997年   229篇
  1996年   186篇
  1995年   181篇
  1994年   119篇
  1993年   99篇
  1992年   104篇
  1991年   72篇
  1990年   63篇
  1989年   61篇
  1988年   39篇
  1987年   15篇
  1986年   11篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1975年   1篇
  1959年   1篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
The state-of-the-art protonic ceramic conductor BaZr0.8Y0.2O3-δ (BZY20) requires an extremely high sintering temperature (≥1700 °C) to achieve the desired relative density and microstructure necessary to function as a proton conducting electrolyte. In this work, we developed a cold sintering pretreatment assisted moderate-temperature sintering method for the fabrication of high-quality pure BZY20 pellets. BZY20 pellets with high relative density of ~94% were fabricated with a final sintering temperature of 1500 °C (200 °C lower than the traditional sintering temperature). A comparison with BZY20 control samples indicated that the proper amount of BaCO3 introduced on the BZY20 particle surface and the high green density achieved by cold sintering pretreatment were the main drivers for lowering the sintering temperature. The electrical conductivity measurement by electrochemical impedance spectroscopy showed that the as-prepared BZY20 pellets have a proton conductivity comparable to the state-of-the-art values. The cold sintering pretreatment outlined in this work has the potential to lower the sintering temperatures for similar types of protonic ceramic materials under consideration for a wide range of energy conversion and storage applications.  相似文献   
12.
Given the superior thermal stability and electromagnetic features, continuous Si–B–(C)–N ceramic fibers have displayed great potential to fulfill the increasing demand for the high-temperature structural and functional materials. Manufacture of such ceramic fibers depends heavily upon the design of processable polymer precursors. Herein, a class of polyborosilazanes (PBSZs) with high spinnability were created through a facile one-pot synthesis. The trade-off between spinnability and ceramic yield of PBSZs was overcome by using heptamethyldisilazane and hexamethyldisilazane as the co-condensing agents to polymerize silicon and boron chloride monomers. The optimal PBSZs can fabricate continuous Si–B–C–N fibers with homogeneous diameter of 7.9 ± 0.5 μm and high ceramic yield of 80 wt%. Experimental characterization and quantum chemical computation revealed the mechanistic pictures of the impact of pendant groups on the polycondensation, melt spinning, and pyrolyzing process. These insights improve our understanding of spinnable pre-ceramic polymers for exploiting high-performance nitride ceramic fibers.  相似文献   
13.
《Ceramics International》2021,47(23):32641-32647
Multi-components and equimolar rare earth monosilicates, (Y1/3Dy1/3Er1/3)2SiO5, (Y1/3Dy1/3Lu1/3)2SiO5, (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5, were prepared by solid-state reactions and the following hot-pressing. Dense microstructures with uniform elemental distributions were obtained for all samples. These investigated multi-components monosilicates exhibit low thermal conductivities and similar coefficients of thermal expansion with SiC. Moreover, they exhibit high corrosion resistances in 1400 °C water vapor, especially, four-components (Y1/4Dy1/4Ho1/4Er1/4)2SiO5 and (Yb1/4Dy1/4Ho1/4Er1/4)2SiO5 experienced almost invariable weights after small weight losses during the initial 0.5 h. All those results indicate that multi-components rare earth monosilicates are promising candidates of environmental barrier coatings for SiC/SiC composites.  相似文献   
14.
Silica-based ceramics have been explored extensively as a class of versatile materials for various applications in architecture, catalysis, energy, machinery, and biomedical engineering. Nevertheless, comprehensive information on silica-based ceramic and electromagnetic microwave (EMW) absorption is scarce, although excellent progress has been made in this field. Here, recent progress in the investigation of silica-based ceramics toward EMW absorption is reviewed. We first introduced the basis of ceramics (characteristics, classification, synthetic methods, potential applications). Subsequently, the silica-based ceramics, including Si-based oxides and alloys, SiOC/SiC/Si3N4/SiCN-based composite, Ti3SiC2 and composite for EMW absorption were systematically summarized. Notably, the fabrication strategies, absorption properties, and mechanisms of silica-based ceramics are described in detail, with a focus on structure and component design. Lastly, the prospects and ongoing challenges of this field in the future are presented. This review is expected to learn from the past and achieve progress toward the future of silica-based ceramic for EMW absorption.  相似文献   
15.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   
16.
An easy albeit quite effective deionization suspension treatment was adopted to alleviate the detrimental effects related to the hydrolysis of Y2O3 in an aqueous medium. Fabrication of highly transparent Y2O3 ceramics with a fine grain size via air pre-sintering and post–hot isostatic pressing (HIP) treatment without using any sintering additive was achieved using the treated suspensions. The hydrolysis issue of Y2O3 powder in an aqueous medium was effectively alleviated by using deionization treatment, and a well-dispersed suspension with a low concentration of dissolved Y3+ species was obtained. The dispersed suspensions were consolidated by the centrifugal casting method, and the green bodies derived from the suspension of 35.0 vol% solid loading showed an improved homogeneity with a relative density of 52.1%. Fully dense Y2O3 transparent ceramic with high transparency was obtained by pre-sintering consolidated green compacts at a low temperature of 1400°C for 16 h in air followed by a post-HIP treatment at 1550°C for 2 h under 200 MPa pressure. The sample had a fine average grain size of 690 nm. The in-line transmittance of the sample reached 83.3% and 81.8% at 1100 nm and 800 nm, respectively, very close to the theoretical values of Y2O3.  相似文献   
17.
Ternary 0.552Pb(Ni1/3Nb2/3)O3-xPbZrO3-(0.448-x)PbTiO3 (PNN-PZ-PT) ceramics near the triple point compositions were fabricated by an improved two-step sintering method. The triple point composition 0.552PNN-0.135PZ-0.313PT ceramic has outstanding piezoelectric performance with piezoelectric coefficient d33 = 1200 pC/N. Its easy fabrication and low cost make this piezoelectric material an excellent candidate for high sensitivity sensors and ultrasonic transducers. The evolution of domain structures for ceramics with composition near the triple point provides deeper insight into the mechanism of ultrahigh piezoelectric properties of PNN-PZ-PT ceramics.  相似文献   
18.
Direct writing is a unique means to align anisotropic particles for the fabrication of textured ceramics by templated grain growth (TGG). We show that alignment of tabular barium titanate (BT) template particles (20–40 μm width and 0.5–2 μm thickness) in a PIN-PMN-PT matrix powder (d50 = 280 nm) is significantly improved during direct writing using anisotropic nozzles at high printing rates. The particle orientation distribution in as-printed filaments, and the texture orientation distribution in sintered ceramic filaments are shown to directly correlate with COMSOL Multiphysics-predicted torque distributions for direct writing with aspect ratio 2, 3 and 5 oval nozzles. Electromechanical strain properties of the textured piezoelectric ceramics significantly improved relative to random ceramics when printed with anisotropic nozzles. Simulations of aspect ratio 20 nozzles and nozzles with interior baffles demonstrate significantly increased torque and near elimination of constant shear stress cores (i.e. plug flow).  相似文献   
19.
Highly transparent X2O3 sesquioxide ceramics were obtained from a solid solution of five different oxides (Lu2O3, Y2O3, Yb2O3, Gd2O3, and Dy2O3), mixed in an equal molar ratio according to the principle of high-entropy. The fabricated (Lu, Y, Yb, Gd, Dy)2O3 ceramics achieved 99.97 % of the relative density and exhibited a high degree of optical transparency with the in-line transmittance of almost 80 % in the visible wavelength range. Emissions of Gd3+ (6PJ8S7/2 at 312 nm), Dy3+ (4F9/26H15/2 at 492 nm and 4F9/26H13/2 at 572 nm), and Yb3+ (2F5/22F7/2 at 1031 nm) suggested a potential application of the high-entropy ceramics as multi-wavelength emission phosphor transparent ceramics. High-entropy ceramics also exhibited lower specific heat and thermal conductivity compared to single-element sesquioxide ceramics. This work demonstrated that highly transparent oxide ceramics, with complex chemical compositions and good optical properties, could be obtained using the high-entropy principle.  相似文献   
20.
The Fe/C/SiCN composite ceramics were synthesized by polymer-derived method to obtain the integration of structure and functions. The electromagnetic waves (EMW) absorption properties at X and Ku bands were investigated. The addition of nano-sized Fe particles improved the magnetic loss and impedance matching, and the carbon nanotubes generated by the iron in-situ catalysis increased the internal relaxation polarization and interfacial polarization, which together improved the EMW absorption properties significantly. In particular, the Fe/C/SiCN-9 showed the optimum reflection loss (RL) of ?31.06 dB at 10.03 GHz with an effective absorption bandwidth (EAB, RL < ?10 dB) of 3.03 GHz at 2.51 mm, indicating the excellent EMW absorption properties of Fe/C/SiCN composite ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号